Understanding Pedestrian Route Choices: Looking for the Path Forward

Dr. Roger Chen Civil and Environmental Engineering University of Hawaii at Manoa

> ITE: Hawaii Section 7/26/2023

Speaker Information

Education

- Ph.D., University of Maryland, College Park
- MS, BS, University of Texas at Austin

Research Interests

- Contexts
 - Travel Behavior Analysis and Demand Forecasting
 - Interactive Experiments (Lab/Field/Product Demonstrations/Virtual)
- Methodologies
 - Econometric and Data Analysis
 - Network Modeling and Analysis
 - Simulation Approaches

Teaching

- CEE 490 Senior Design Project
- CEE 464 Urban and Regional Transportation Planning
- CEE 270 Engineering Mechanics I: Statics
- CEE 664 Advanced Transportation Modeling and Statistics
- CEE 696 Smart Cities

Introduction and Context

- Walking and Biking Infrastructure in the News
 - Sensors to Count Pedestrians, Cyclists On Oahu Routes Star-Advertiser (12/9/2022)
 - Protected Bicycle Lanes open on Ward Avenue Star Advertiser (8/31/2021)
 - Work at Hawaii Kai intersection scheduled for bike improvements Star (4/3/2023)
- Recent Infrastructure Projects
 - Pensacola Bike Lane
 - Ala Pono Bridge
 - Skyline Transit Stations
- Statewide Master Plans
 - Pedestrian
 - Bicycle

Transportation Scenario Planning and Analysis for emerging mobility contexts requires information on **who (household)** uses them, **when** they are used, **where** they go and **how** they are used

Travel Demand Analysis – Four Step Model for Forecasting

Travel Demand Analysis – Four Step Model for Forecasting

- Trip Generation How many trips will there be?
- Trip Distribution Where will there be trips?
- Mode Split What travel modes will be used?
- Traffic Assignment What routes will be used (and at what time...)?

Travel Demand Analysis – Four Step Model for Forecasting

TDFM Network for Active Travel Analysis

Oahu Travel Demand Forecasting Model (TDFM)

- Used by DTS, OMPO, HDOT:
 - Evaluate Scenarios
 - New Mobility Services
 - Demographic Shifts
 - Measure Externalities:
 - GHG Emissions/Fuel Consumption
 - Health Outcomes

Issues/Problems for Active Travel

Incomplete Representation

- Network Topology (Multi-Resolution)
- Behavioral and Traffic Flow Modeling
- Lack of Consistent Traffic Data
 - "Mixed Traffic Flow" Poorly Understood
 - Multi-Modal Trips only **Implicitly** Considered

Analysis Framework

• Other Scenarios

Open Street Maps (<u>https://www.openstreetmap.org</u>**)**

Person A - GPS Points: 1 Day

Person A - GPS Points: 3 Day

Person A - GPS Points: 5 Day

Person A - GPS Points: 5 Day – Cleaned for Errors

Network Construction

1) Estimate Line Density: Over Observed Trajectories from GPS 2) Determine Threshold and Draw Centerlines ("best" estimate of routes/network)

3) Update Network with NEW Observed Network

Data Collection

Timeframe: 4/10/23-4/24/23 (only weekdays)

GPS Trace Data Collection

- All Days
- Smartphone App GPS Point Logger (free)
- Honolulu Metro Area (Kakaako, etc.)
- **53** participants <u>started data collection</u>
- Final Analysis Sample Characteristics
 - N=16, Routes (Walking) = 298 (~2 trips per person per day)
 - Gender: Females 6; Males 10
 - Field: Engineering 13; Kinesiology 2; Public Health 1
 - Class: Freshman: 5; Sophomore 1; Juniors 2; Seniors 6; Graduate 2
 - Only Trips within the UH Campus Study Area

Link Attributes

Travel Distance – distance of each link determined in GIS

From Field Observation and a Preliminary Walking Audit

- Sidewalk/Paved Walkway
- Grass Surface
- Parking Lot
- Quadrangle: a space or a courtyard, usually rectangular in plan, the sides of which are entirely or mainly occupied by parts buildings (Fleming et al. 2000)

From External Source

- □ Grade/Slope U.S. Geological Survey (USGS) 10m DEM data
- Tree Canopy Raster Data from a partnership among
 - EarthDefine LLC, US Forest Service
 - National Oceanic and Atmospheric Administration, and
 - Hawaii Division of Forestry and Wildlife

Final Estimated Pedestrian Network - Density Plot of All Routes Observed

Network and Route Characteristics

Network Characteristics		Route Attributes	Observed Routes	Shortest Routes		
Number of Links	1,354	Number of ODs 298				
Number of Nodes	1,084	Average Distance (meters)	532	474		
Total Distance (meters)	61,851	Longest Distance (meters)	1 791	1 505		
Minimum Spanning Tree (meters)	39,395	Shortest Distance (meters)	80	80		
Percentage of Network by Attribute (Distance)		Average Percentage by Distance				
Sidewalk	79.3%	Sidewalk	74.5%	69.7%		
Grass Surface	1.9%	Grass Surface	2.1%	2.1%		
Quadrangle	17.3%	Quadrangle	22.2%	23.7%		
Tree Canopy	5.1%	Tree Canopy	17.8%	16.8%		
Parking Lot	1.1%	Parking Lot	1.6%	1.0%		

Link Attributes: Sidewalk

Link Attributes: Parking and Grass

Link Attributes: Tree Canopy

Link Attributes: Quadrangle

Analysis Framework

Mode Choice Model for Trips

Choice Probabilities

= f(travel time, travel costs, transfers, income, etc.)

Analysis Framework

Mode Choice Model for Trips

Ped Route Choice Model for Trips

Choice Probabilities

= f(travel time, travel costs, transfers, income, etc.)

Choice Probabilities

= f(travel time, travel distance, shade, ADA accessibility, noise, congestion, etc.)

Conventional Route-Based Models

Node $1 \rightarrow Node 4$

Shortest Length \rightarrow Highest Probability

Longest Length \rightarrow Lowest Probability

Recursive Link-Based Models

Node $1 \rightarrow Node 4$

Route	Link Attributes (Length)	Route Choice Probability	Product of <u>Link Choice</u> <u>Probabilities (Recursive Model)</u>		
2 ∢	2	0.6572	0.6572		
	6	0.0120	0.0120		
	1, 2	0.2418	0.3307 · 0.7311 = 0.2418		
	1, 1.5, 1.5	0.0889	0.3307 · 0.2689 ·1.000 = 0.0889		

Results: Model Estimation

Coefficient Values: Change in utility per attribute based on data

- Positive (sign) indicates higher utility and likelihood of choice
- Negative (sign) indicates lower utility and likelihood of choice
- Units: Utility per Attribute Unit
 - Example (distance in meters): β_{DIST} (utility per meters)

□ t-statistic: Indicates statistical significance of attribute <u>based on data</u> □ 95% confidence \rightarrow t-statistic = ±1.96

Results: Model Estimation

Coefficient	Value	Std. Error	t-statistic	Value	Std. Error	t-statistic		
Travel Distance (100 meters)	-5.912	0.347	-17.030	-5.562	0.315	-17.663		
Grade/Slope	0.004	0.006	0.674					
Sidewalk (1/0)	-0.469	0.052	-8.935	-0.502	0.048	-10.384		
Grass (1/0)	-1.754	0.584	-3.006	-1.793	0.586	-3.061		
Quadrangle (1/0)	0.204	0.076	2.686	0.188	0.070	2.676		
Tree Canopy (1/0)	-0.064	0.079	-0.811					
Parking Lot (1/0)	0.144	0.497	0.290					
Interaction Terms								
Travel Distance - Sidewalk	2.224	0.261	8.514	2.004	0.249	8.041		
Travel Distance - Grass	5.139	1.385	3.710	4.911	1.360	3.612		
Travel-Distance - Quadrangle	-0.985	0.364	-2.705	-0.811	0.336	-2.415		
Travel Distance - Tree Canopy	0.350	0.280	1.249					
Travel Distance - Parking Lot	2.351	1.623	1.449					
Sample Size (Travelers)	16			16				
Sample Size (Routes)	298			298				
Sample Size (Links)	5,404			5,404				
LL(DIST)	-6.496			-6.496				
LL(β)	-5.950			-5.998				

Results: Marginal **Disutility** (per 100 meters)

Results: Summary

 Longer routes lead to greater <u>disutility</u> and were less likely to be chosen.

□ Link attributes that will improve (offset) this disutility

- Sidewalk 30%
- □ Grass Surface 58%
- Tree Canopy 5%
- Parking Lot 42%

Link attributes that lead to even greater disutility

Quadrangle – 13%

Conclusions and Future Work

Distance is a disutility in route choice, but other link attributes can help compensate, such as the presence of a sidewalk and grass coverage

- Although the presence of tree canopies and parking lots also could compensate, based on the estimated model, these were statistically insignificant.
- Surprisingly, links that traversed quadrangles resulted in higher disutility, possibly due to greater sun exposure and a more crowded space.

Conclusions and Future Work

- Future Studies and Work
 More complete walking audit to collect and measure link attributes.
 - □ Use of estimated route choice model for forecasting at other sites.
 - Extension to other travel modes.
 - Incorporation of latent variables into route choice will be incorporated
 - Ex. Comfort, Reliability, Accessibility, Safety
 - Greater coverage of traveler preferences and geographies (other areas of the city with heavy pedestrian traffic)
 - Link attributes may be highly correlated, requiring a different model besides the recursive logit.

