Understanding Pedestrian Route Choices: Looking for the Path Forward

Dr. Roger Chen
Civil and Environmental Engineering
University of Hawaii at Manoa

ITE: Hawaii Section
7/26/2023

Speaker Information

- Education
- Ph.D., University of Maryland, College Park
- MS, BS, University of Texas at Austin
- Research Interests
- Contexts
- Travel Behavior Analysis and Demand Forecasting
- Interactive Experiments (Lab/Field/Product Demonstrations/Virtual)
- Methodologies
- Econometric and Data Analysis
- Network Modeling and Analysis
- Simulation Approaches
- Teaching
- CEE 490 - Senior Design Project
- CEE 464 - Urban and Regional Transportation Planning
- CEE 270 - Engineering Mechanics I: Statics
- CEE 664 - Advanced Transportation Modeling and Statistics
- CEE 696 - Smart Cities

Introduction and Context

- Walking and Biking Infrastructure in the News
- Sensors to Count Pedestrians, Cyclists On Oahu Routes - Star-Advertiser (12/9/2022)
- Protected Bicycle Lanes open on Ward Avenue - Star Advertiser (8/31/2021)
- Work at Hawaii Kai intersection scheduled for bike improvements - Star (4/3/2023)
- Recent Infrastructure Projects
- Pensacola Bike Lane
- Ala Pono Bridge
- Skyline Transit Stations
- Statewide Master Plans
- Pedestrian
- Bicycle

Transportation Scenario Planning and Analysis for emerging mobility contexts requires information on who (household) uses them, when they are used, where they go and how they are used

Travel Demand Analysis - Four Step Model for Forecasting

Travel Demand Analysis - Four Step Model for Forecasting

- Trip Generation - How many trips will there be?
- Trip Distribution - Where will there be trips?
- Mode Split - What travel modes will be used?
- Traffic Assignment - What routes will be used (and at what time...)?

Travel Demand Analysis - Four Step Model for Forecasting

TDFM Network for Active Travel Analysis

Oahu Travel Demand Forecasting Model (TDFM)

. Used by DTS, OMPO, HDOT:

- Evaluate Scenarios
- New Mobility Services
- Demographic Shifts
- Measure Externalities:
- GHG Emissions/Fuel Consumption
- Health Outcomes

Issues/Problems for Active Travel

Incomplete Representation

- Network Topology (Multi-Resolution)
- Behavioral and Traffic Flow Modeling
- Lack of Consistent Traffic Data
" "Mixed Traffic Flow" Poorly Understood
- Multi-Modal Trips only Implicitly Considered

Analysis Framework

Community Contributions

Network Updating Process

Open Street Maps (https://www.openstreetmap.org)

Person A - GPS Points: 1 Day

Person A - GPS Points: 3 Day

Person A - GPS Points: 5 Day

Person A - Route 4, Route 8 and Route 13

Person A - GPS Points: 5 Day - Cleaned for Errors

Network Construction

Data Collection

\square Timeframe: 4/10/23-4/24/23 (only weekdays)
\square GPS Trace Data Collection

- All Days
- Smartphone App - GPS Point Logger (free)
- Honolulu Metro Area (Kakaako, etc.)
- 53 participants started data collection
\square Final Analysis Sample Characteristics
- $N=16$, Routes (Walking) $=298$ (~ 2 trips per person per day)
- Gender: Females 6; Males 10
- Field: Engineering 13; Kinesiology 2; Public Health 1
- Class: Freshman: 5; Sophomore 1; Juniors 2; Seniors 6; Graduate 2
- Only Trips within the UH Campus Study Area

Link Attributes

\square Travel Distance - distance of each link determined in GIS
\square From Field Observation and a Preliminary Walking Audit

- Sidewalk/Paved Walkway
- Grass Surface
- Parking Lot
- Quadrangle: a space or a courtyard, usually rectangular in plan, the sides of which are entirely or mainly occupied by parts buildings (Fleming et al. 2000)
\square From External Source
- Grade/Slope - U.S. Geological Survey (USGS) 10 m DEM data
- Tree Canopy - Raster Data from a partnership among
- EarthDefine LLC, US Forest Service
- National Oceanic and Atmospheric Administration, and
- Hawaii Division of Forestry and Wildlife

Final Estimated Pedestrian Network - Density Plot of All Routes Observed

Network and Route Characteristics

Network Characteristics		Route Attributes	Observed Routes	Shortest Routes
Number of Links	1,354	Number of ODs	298	
Number of Nodes	1,084	Average Distance (meters)	532	474
Total Distance (meters)	61,851	Longest Distance (meters)	1,791	1,505
Minimum Spanning Tree (meters)	39,395	Shortest Distance (meters)	80	80
Percentage of Network by Attribute (Distance)		Average Percentage by Distance		
Sidewalk	79.3\%			
Grass Surface	1.9\%	Sidewalk	74.5\%	69.7\%
		Grass Surface	2.1\%	2.1\%
Quadrangle	17.3\%	Quadrangle	22.2\%	23.7\%
Tree Canopy	5.1\%	Tree Canopy	17.8\%	16.8\%
Parking Lot	1.1\%	Parking Lot	1.6\%	1.0\%

Link Attributes: Sidewalk

Link Attributes: Parking and Grass

Link Attributes: Tree Canopy

Link Attributes: Quadrangle

Analysis Framework

\square Mode Choice Model for Trips

Home to Work

Car	Bus	Bike/Walk
(85%)	(10%)	(5%)

Choice Probabilities
$=\mathrm{f}$ (travel time, travel costs, transfers, income, etc.)

Analysis Framework

Mode Choice Model for Trips

Home to Work

Car	Bus	Bike/Walk
(85%)	(10%)	(5%)

Choice Probabilities

$=f($ travel time, travel costs, transfers, income, etc.)
\square Ped Route Choice Model for Trips

Choice Probabilities
$=\mathrm{f}$ (travel time, travel distance, shade, ADA accessibility, noise, congestion, etc.)

	Node $1 \rightarrow$ Node 4		Recursive Link-Based Models
Route	Link Attributes (Length)	Route Choice Probability	Product of Link Choice Probabilities (Recursive Model)
(1) \longrightarrow (4)	2	0.6572	0.6572
(1)	6	0.0120	0.0120
	1,2	0.2418	$0.3307 \cdot 0.7311=0.2418$
	1,1.5,1.5	0.0889	$\begin{aligned} & 0.3307 \cdot 0.2689 \cdot 1.000 \\ & =0.0889 \end{aligned}$

Results: Model Estimation

\square Coefficient Values: Change in utility per attribute based on data

- Positive (sign) indicates higher utility and likelihood of choice
- Negative (sign) indicates lower utility and likelihood of choice
- Units: Utility per Attribute Unit
- Example (distance in meters): $\beta_{\text {DIST }}$ (utility per meters)
\square t-statistic: Indicates statistical significance of attribute based on data - 95% confidence \rightarrow t-statistic $= \pm 1.96$

Results: Model Estimation

Coefficient	Value	Std. Error	t-statistic	Value	Std. Error	t-statistic
Travel Distance (100 meters)	-5.912	0.347	-17.030	-5.562	0.315	-17.663
Grade/Slope	0.004	0.006	0.674	---	---	---
Sidewalk (1/0)	-0.469	0.052	-8.935	-0.502	0.048	-10.384
Grass (1/0)	-1.754	0.584	-3.006	-1.793	0.586	-3.061
Quadrangle (1/0)	0.204	0.076	2.686	0.188	0.070	2.676
Tree Canopy (1/0)	-0.064	0.079	-0.811	---	---	---
Parking Lot (1/0)	0.144	0.497	0.290	---	---	---
Interaction Terms						
Travel Distance - Sidewalk	2.224	0.261	8.514	2.004	0.249	8.041
Travel Distance - Grass	5.139	1.385	3.710	4.911	1.360	3.612
Travel-Distance - Quadrangle	-0.985	0.364	-2.705	-0.811	0.336	-2.415
Travel Distance - Tree Canopy	0.350	0.280	1.249	---	---	---
Travel Distance - Parking Lot	2.351	1.623	1.449	---	---	---
Sample Size (Travelers)		16			16	
Sample Size (Routes)		298			298	
Sample Size (Links)		5,404			5,404	
LL(DIST)		-6.496			-6.496	
LL(β)		-5.950			-5.998	

Results: Marginal Disutility (per 100 meters)

Results: Summary

\square Longer routes lead to greater disutility and were less likely to be chosen.
\square Link attributes that will improve (offset) this disutility

- Sidewalk - 30\%
- Grass Surface - 58\%
- Tree Canopy - 5\%
- Parking Lot - 42\%
\square Link attributes that lead to even greater disutility
- Quadrangle - 13\%

Conclusions and Future Work

\square Distance is a disutility in route choice, but other link attributes can help compensate, such as the presence of a sidewalk and grass coverage
\square Although the presence of tree canopies and parking lots also could compensate, based on the estimated model, these were statistically insignificant.
\square Surprisingly, links that traversed quadrangles resulted in higher disutility, possibly due to greater sun exposure and a more crowded space.

Conclusions and Future Work

\square Future Studies and Work
口 More complete walking audit to collect and measure link attributes.

- Use of estimated route choice model for forecasting at other sites.
- Extension to other travel modes.
- Incorporation of latent variables into route choice will be incorporated - Ex. Comfort, Reliability, Accessibility, Safety
- Greater coverage of traveler preferences and geographies (other areas of the city with heavy pedestrian traffic)
- Link attributes may be highly correlated, requiring a different model besides the recursive logit.

THANK YOU

